首页> 外文OA文献 >A flexible approach to parametric inference in nonlinear and time varying time series models
【2h】

A flexible approach to parametric inference in nonlinear and time varying time series models

机译:非线性和时变时间序列模型中参数推断的灵活方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Many structural break and regime-switching models have been used with macroeconomic and …nancial data. In this paper, we develop an extremely flexible parametric model which can accommodate virtually any of these speci…cations and does so in a simple way which allows for straightforward Bayesian inference. The basic idea underlying our model is that it adds two simple concepts to a standard state space framework. These ideas are ordering and distance. By ordering the data in various ways, we can accommodate a wide variety of nonlinear time series models, including those with regime-switching and structural breaks. By allowing the state equation variances to depend on the distance between observations, the parameters can evolve in a wide variety of ways, allowing for everything from models exhibiting abrupt change (e.g. threshold autoregressive models or standard structural break models) to those which allow for a gradual evolution of parameters (e.g. smooth transition autoregressive models or time varying parameter models). We show how our model will (approximately) nest virtually every popular model in the regime-switching and structural break literatures. Bayesian econometric methods for inference in this model are developed. Because we stay within a state space framework, these methods are relatively straightforward, drawing on the existing literature. We use arti…cial data to show the advantages of our approach, before providing two empirical illustrations involving the modeling of real GDP growth.
机译:许多结构性突破和政权转换模型已用于宏观经济和金融数据。在本文中,我们开发了一种非常灵活的参数模型,该模型几乎可以容纳所有这些规范,并且以允许直接进行贝叶斯推断的简单方式来实现。该模型的基本思想是,它将两个简单的概念添加到标准状态空间框架中。这些想法是有序和距离。通过以各种方式对数据进行排序,我们可以适应各种非线性时间序列模型,包括那些具有状态切换和结构中断的模型。通过允许状态方程方差取决于观测值之间的距离,参数可以以多种方式演化,从而允许从表现出突变的模型(例如阈值自回归模型或标准结构破坏模型)到允许参数的逐步演化(例如,平滑过渡自回归模型或时变参数模型)。我们展示了我们的模型将如何(大约)将几乎所有流行的模型嵌套在制度转换和结构破坏文献中。开发了在该模型中进行推理的贝叶斯计量经济学方法。由于我们处于状态空间框架之内,因此这些方法相对简单,借鉴了现有文献。在提供两个涉及实际GDP增长模型的实证说明之前,我们使用人工数据来展示我们方法的优势。

著录项

  • 作者

    Koop, G.M.; Potter, S.;

  • 作者单位
  • 年度 2010
  • 总页数
  • 原文格式 PDF
  • 正文语种 {"code":"en","name":"English","id":9}
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号